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Assembling the pieces
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• We have all the building blocks (ion channels, morphologies, single cell 

models, connections, synapses)
• We have to assemble them to make a network

• What do we have to do?
Ø We need to define the space and populate it with our neurons
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Define the space
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• Arbitrary volumes

• Simplified volumes
• Atlases

• Intermediate approaches



Arbitrary volume
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• Volume is not taken into account

• Cells and synapses have spatial coordinates
• Some simulators require the definition of a space

• Anyway, the volume is arbitrary



Simplified volume
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• Regular geometry

• The volume can be more or less constrained experimentally
• Geometrical parameters vary greatly in experiments, so it is not 

straightforward to set the ‘correct’ parameters
• Positioning the cells is easier
• Performing analyses that require volume information is easier

• Poor reusability



Atlas-based volume
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• The geometry is given, and we do not have to define it

• Atlases are generally noisy and should be curated
• Positioning the cells is more complicated

• Performing analyses that require volume information is more complicated
• High reusability
• Combine data and models that are registered in the same atlas space
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Cutsuridis et al., 2010

• (Rat) CA1 microcircuit
• The model consists of 100 pyramidal 

(P) cells, 2 basket (B) cells, 1 

bistratified (BS) cell, 1 axo-axonic (AA) 

cell, and 1 oriens lacunosum

moleculare (OLM) cell
• Simplified morphologies including the 

soma, apical and basal dendrites and 

a portion of axon, were used for each 

cell type.

Arbitrary volumes
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Markram et al., 2015

• SSCx microcircuit
• Layer thicknesses are defined 

experimentally

• The horizontal dimensions of a 

microcircuit were estimated by 

evaluating the density of dendritic fiber 
at the center of the circuit

• The hexagonal shape was chosen to 

to facilitate tiling, while minimizing 

asymmetrical edge effects

Simplified volume



14Markram et al., 2015



Simplified volume

15Bezaire et al., 2016

• Rat hippocampus CA1
• Dimensions are constrained 

experimentally (?)



Atlas
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Atlas from Ropireddy et al, 2012
http://krasnow1.gmu.edu/cn3/hippocampus3d/

• Rat hippocampus CA1 model 

(Romani et al., 2023)
• Atlases are quite noisy

• This makes the cell positioning 
very challenging

http://krasnow1.gmu.edu/cn3/hippocampus3d/


Atlas
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• Noisy atlases contain sudden 

jumps in layer thickness and 
different kind of discontinuities

• Series of manipulations can be 
adopted to alleviate those 
problems



Atlas
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Romani et al.

• After smoothing the atlas still 

contains a series of errors: holes, 
layers may terminate earlier

• Further manipulations make the 
volume deviates too much from 
original data

• We have to accept that the raw 
data is pretty noisy



Cell positioning:  follow the curvature

19Romani et al., 2024

• In regions like cortex and 

hippocampus, cells have a 
specific orientation in the volume

• If the region of interest is curved, 
cells follow this curvature



20Romani et al., 2024
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Cell positioning: respect neurite targeting
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Insert gittering (cloning) and select the most appropriate cell (see later)

To be excluded



Cell positioning: respect neurite targeting

23

SR

SP

SO

SR

SP

SO



Cell positioning: respect neurite targeting
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Cell positioning: respect neurite targeting
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Cloning and scaling, and select the most appropriate cell (see later)



Cell positioning: 
respect neurite targeting
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Markram et al., 2015



Cell positioning
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Romani et al., 2024



Morphological synthesis
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(total cost) = (wiring cost) + bf * (path length cost)

wiring cost = Euclidean distance between the carrier point and the node
path length cost = path along the tree from the root to the carrier point



30



31



Intermediate approaches
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Fixed ratio between layer thicknesses

Romani et al.

Smoothed atlas
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Schneider et al., 2014

Intermediate approaches



34

Cell placement: synthetic cells
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Cell placement: synthetic cells
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37https://bbp.epfl.ch/nexus/cell-atlas/
Erö et al., 2018



Striatum
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• The simplest cell placement is 

random orientation
• An example of a network like 

that is striatum

Hjorth et al., 2020



Olfactory bulb
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• Glomeruli are specialized 

structures where a series of 
dendrites and axons converge 

and form synapses
• Cell placement has to take this 

into account

Nagayama et al., 2014



Cerebellum

40

• Glomeruli

• “semicrystalline” structure

D’Angelo and Casali, 2013medicalxpress.com



Summary 1
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• Find a tradeoff between accuracy and cost

• Atlas-based networks use a standard space
• More reusability

• More and more data will be registered in atlases
• It enables us to move from brain regions to whole brain
• Some intermediate approaches (atlas with fixed layers) keep the cost 

reasonable while allowing to use a standard space



Circuit 1
Part 2: dealing with sparse data
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What you would like
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The reality
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How to overcome sparsity and reproducibility of data?
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Ion channel kineticsCell densities Morphologies Synaptic physiology

Numbers in literature can 
vary up to 4 fold 

Usually data is 
incomplete or missing

Data often is inconsistent and raw 
data largely not publicly available

Very few pathways have 
been characterized. Data 
can be very sparse

Examples of some issues with existing data



Lecture Overview
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From Sparse Data to Dense Models
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Interconnection of the data
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Connectome
v Volume

v Number of cells

v Cell composition
v Cell densities

v Cell positions
v Cell morphologies (neurite lengths, topology…)

v Number of synapses

v Spine morphologies (length…)
v Bouton densities

v Number of synapses per connection
v Connection probabilities

v Synapse location (on soma, dendrite, axon…)

v Divergence, convergence…



Example 1: predict the connectome
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Synaptic physiology

Very few pathways have 
been characterized. Data 
can be very sparse

• Connectome (set of connections) is a classical 
example of sparse data

• N cells form N2 potential connections and only few of 

them are well characterized (e.g. number of 

synapses per connection, connection probability…)

• The figure on the right represent data on synaptic 

physiology but something similar occurs with synaptic 

anatomy

• The connectome can be predicted by co-localization 
of axon and post-synaptic neurons



Example 2: generalisation
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• When we lack data on A, we can use data on B which we assume to be 

similar to A

• The frequent example is using data from a species to model another 

species (use rat data to model mouse or vice versa)

• Another example is schematized in the next slides
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Generalization

Parameter space

datapoints

Similar data are located in close proximity
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Generalization

Parameter space

1. Divide the space in subspaces
2. Use the datapoints to describe the corresponding subspaces

subspaces



Example 3: morphologies
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• Morphologies are all unique

• We have only few reconstructions

• How can we restore the biological 
variability?

• We could inject noise into branch 
lengths and rotations, leaving the 

overall branching structure 
unchanged



Data heterogeneity
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• Our sparse data is often heterogeneous
• (Experimental) data are from different animals, experimental conditions, of 

different quality, scales…
• Data curation homogenizes data and preparers them to be integrated in the 

model (data integration)



Different scales - Experimental neuroscience
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Sejnowski et al., 2014



Data curation
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• Select the most appropriate data (e.g. data for the 
species we are modelling, higher quality data…)

• Working assumptions are often necessary to mitigate 
heterogeneity (e.g. rat data can be used to model 
mouse in the lack of specific data, we can ignore the 
effect of temperature on morphology reconstruction)

• Simple data manipulations can be adopted (e.g. 
divisive scaling factor of 0.41 to convert mouse data 
to rat – Attili et al., 2021)

• More sophisticated strategies are necessary in other 
cases (e.g. kinetics of the channels can be measured 
at different temperatures, recordings can be made at 
different bath concentrations of Ca and K)

Numbers in literature can 
vary up to 4 fold 

Cell densities



Repair data
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smoothing

(lecture 9)

van Pelt et al., 2014

Cut repair
(lecture 3)



What to do with missing data?
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From lecture 6…

• More (novel) experiments
• Guess parameters and hand-tune

• Systematic grid search
• Regularize parameters
• Infer parameters from other 

(related) and more easily 
measurable properties

• Parameter Optimization

• Possible for few parameters
• See next ‘working assumptions’

• Possible for few parameters
• Extrapolation / fit. See next ‘algorithm’
• See next ‘use similar datasets’

• Possible but expensive for large 
networks



What to do with missing data?
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• Working assumptions

• Generalization
• Algorithms
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64Ecker et al., 2020



65Ecker et al., 2020



66

Generalization for the hippocampal synapses

SOM SOM SOM SOM PV PV PV NOS CCK CCK CCK
pre\post SP_PC SO_OLM SO_BS SO_Tri SO_BP SP_PVBC SP_BS SP_AA SP_Ivy SP_CCKBC SR_SCA SLM_PPA
SP_PC x x xx x x x

SOM SO_OLM
SOM SO_BS
SOM SO_Tri x
SOM SO_BP
PV SP_PVBC xx xx
PV SP_BS x
PV SP_AA x
NOS SP_Ivy x
CCK SP_CCKBC xx xx
CCK SR_SCA xx
CCK SLM_PPA

xx complete parameters x partial parameters E1 E2 E3 I1 I2 I3



Morphologies
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Examples of strategies used to recover missing information at the level of 

morphologies:
• Assumptions

– Generic / simplified / ball-and-stick morphologies

• Generalizations
– Apply a morphology from a species/age/region to another

• Algorithms
– Cloning, scaling, and synthesis can recover missing information



Connectome
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Examples of strategies used to recover missing information at the level of 

connectome:

• No axon, no space approaches

• No axon, space approaches

• Axon, space approaches More predictive

Less predictive
We have to set all the parameters
We can use generalization



69Bezaire and Soltesz, 2013 (Bezaire et al., 2016)

A -> *



70Bezaire and Soltesz, 2013 (Bezaire et al., 2016)



Recap: axon-based approaches
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Below threshold
Above threshold
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Potential synapses
Appositions
Touches

Recap: axon-based approaches
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Pruning
Synapses

x

Recap: axon-based approaches
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Reimann et al., 2015



Reimann et al., 2015
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1. Tabula rasa rule: virtually all neurons within a layer of a 
microcircuit are potentially connected

2. Synapse location rule: location of synapses is established by the 

incidental appositions of semi-randomly placed neurons

3. Fractional conversion rule: while each apposition is a potential 

synapse, actual synapses form at only a fraction of them
4. Multi-synapse rule: connections always involve multiple synapses

5. Plasticity reserve rule: only a fraction of potential multi-synapse 

connections are functionally realized

Touch Detector

Pruning #1

Pruning #2

Pruning #3
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Reimann et al., 2015

A -> B: general pruning
B -> C: multi-synaptic pruning

C -> D: plasticity-reserve pruning



77Ramaswamy et al., 2015



Summary 2
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• Even for a small part of the brain, data are sparse and heterogeneous

• Depending on the approaches used to build our model, we have to specify 
more or less parameters (e.g. connectivity based on axon or not)

• In any case, we have to make several assumptions
• Be explicit with the assumptions, and list them
• When the model is failing in some validations, it will be easier to revise the 

assumptions and identify the one that is problematic
• Use validations to verify the assumptions and the resulting model



Lecture Summary
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• Once we build all the blocks of a network, we have to assemble them

• It is not necessarily true that if the building blocks are correct, the 
assembled artifact is correct as well (see next lecture when we simulate the 

network)
• Our building blocks are assembled in a space, and defining the space is yet 

another issue that affects our result

• The problem of data sparseness is even more evident at this stage
• We have to deal with this problem, but strategies exit

• Reconstructing a brain region or the entire brain is now a feasible problem



What you have learn
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• Different approaches to consider the volume

• Challenges related to the volume and the cell placement
• Possible strategies to mitigate these challenges. Morphology synthesis

• Generalization and other strategies to fill the gaps


